Friday, 28 September 2018

Beware the Easy Fix

Whenever you get a bug report be sure you can reproduce the problem before you start and check you’ve fixed the bug when you make your change.

This advice might seem blindly obvious and you’re probably wondering who on earth would try and fix a bug without reproducing the problem first and then without testing the fix works afterwards [1]. I wondered that too but I was recently involved in a bug report that seemed so cut-and-dried I thought I might have to reconsider my own obsessive desire to stick rigidly to the process. I was of course mistaken…

The Bug

A bug showed up in a new message queue processing service that meant when the message queue broker was down for longer than a minute or so the consumer lost its connection and never reconnected in the background. In turn this meant the queue would slowly back-up – the process was still alive and kicking, it just wasn’t servicing the queue.

This bug report came by way of a production incident and an experienced colleague had triaged the problem so the ticket came into the team with some useful details attached. In the ticket the final log message from the service before it went dark told us that the dispatcher thread had shut down due to the failure to reconnect. The ticket also pointed us to the bit of code where the dispatcher thread was configured.

Looking at the service code along with a quick read of the third party library documentation made it seem pretty obvious that the recovery options configured for the dispatcher were insufficient. It was set-up with only 3 short retries and a circuit breaker for good measure. As a result of the incident some monitoring had been added to the queue so there was no reason why we couldn’t just enable infinite connection retries [2] and effectively disable the circuit breaker. Fixing the dispatcher code was a doddle as the message consumer library is well designed and has good documentation.

It almost seemed too easy…

The Shortest Path

The problem with bugs in infrastructure code like this is that they almost certainly don’t have any automated test coverage because writing them is really hard [3]. In fact testing this kind of issue can be arduous even when done manually as you need to control the middleware which might be outside your control or just something which sits in the background ticking away and therefore is almost invisible unless you wrote the original code or have had to fix it before. Throw in the fact that the bug wasn’t a showstopper and it’s easy to see how you could apply Sir Tony Hoare’s principle about code “being so simple there are no obvious bugs” and just push the change out based on the ability to compile the code and the fact that it doesn’t make matters any worse (you can show you’ve not broken the ability to connect to the queue).

Of course when the problem shows up in production again you’ll know that you never really fixed the problem and you’ll have to go around the loop once more, but do what you should have done first time around as the second outage will no doubt have made a few more people annoyed.

Another Bug

Unsurprisingly the simple code change suggested by the ticket actually had no effect at all when we came to test it, and this sudden realisation that we didn’t really understand what was going on was the impetus needed to take a step back and start again from the beginning.

Whilst performing a quick disconnection test (by bouncing the middleware) we noticed that the queue was behaving weirdly and not backing up like it said in the bug report. Another rabbit hole later [4] and we discover that the queue was not set-up to be durable, which in itself turned out to be another bug.

Eventually we find a way to reproduce the problem and in the process we learn a bit more about how the middleware and message consumer library both work. However we still don’t understand why the new dispatcher configuration does not appear to be working. Luckily the library is open source and so we can debug the issue ourselves and see what is going on under the hood.

The Real Fix

Who would have guessed that internally the message consumer library had another retry and circuit breaker policy that was used to control the (re)connection attempts to the message queue broker. Unlike the dispatcher thread error recovery policy, which was configured explicitly, the message queue connection policy was controlled by a couple of defaulted arguments on the connection configuration object constructor [5].

Sadly we couldn’t be explicit and use the “wait and retry forever” policy that was available on the dispatcher so instead we had to settle for configurating the number of connection attempts to int.MaxValue.

Problem Solved

Naturally it was far simpler to test the fix because we eventually put the effort into working out how to reproduce the problem in the first place. This can be quite significant from a status reporting perspective because it means you are less likely to be over optimistic about your progress. If you’re struggling to reproduce the problem then you’re going to struggle to prove that you’ve fixed it. If you mistakenly believe that the fix is simple and you then feel under pressure to get the testing done at the end it’s harder to convince yourself to do what needs to be done rather than settle for only potentially being right.

 

[1] This is somewhat disingenuous as there are times where this is not possible, but that’s unusual in the world of mainstream software development.

[2] Without the alert on the queue size we would need to find another way to signal when processing has dropped off. For example the circuit breaker should have triggered some other alert as connection failures are to be expected, but only for a limited time before escalation needs to occur.

[3] See “Automated Integration Testing with TIBCO” for an example of how I’ve done this in the past with a TIBCO message queue.

[4] Yes, the middleware was RabbitMQ but no pun was intended, for once.

[5] I’m not suggesting the library, which is provided for free out of kindness, is at fault. On the contrary the documentation was excellent, as was the support we received on Gitter. I need to help fix this, somehow.

Monday, 3 September 2018

Surgical Support Needs Surgical Tools

In the world of IT support there is the universal solution to every problem – turn it off and on again. You would hope that this kind of drastic action is only drawn upon when all other options have been explored or that the problem is known a priori to require such a response and is the least disruptive course of action. Sadly what was often just a joke in the past has become everyday life for many systems as rebooting or restarting is woven into the daily support routine.

In my professional career I have worked on a number of systems where there are daily scheduled jobs to reboot machines or restart services. I’m not talking about the modern, proactive kind like the Chaos Monkey which is used to probe for weaknesses, or when you force cluster failovers to check everything’s healthy; I’m talking about jobs where the restart is required to ensure the correct functioning of the system – disabling them would cripple it.

Sledgehammers

The need for the restart is usually to overcome some kind of corrupt or immutable internal state, or to compensate for a resource leak, such as memory, which degrades the service to an unacceptable level. An example of the former I’ve seen is to flush a poisoned cache or pick up the change in date, while for the latter it might be unclosed database connections or file handles. The notion of “recycling” processes to overcome residual effects has become so prominent that services like IIS provide explicit support for it [1].

Depending on where the service sits in the stack the restart could be somewhat disruptive, if it’s located on the edge, or largely benign if it’s purely internal, say, a background message queue listener. For example I once worked on a compute farm where one of the front-end services was restarted every night and that caused all clients to drop their connection resulting in a support email being sent due to the “unhandled exception”. Needless to say everyone just ignored all the emails as they only added to the background noise making genuine failures harder to spot.

These kind of draconian measures to try and attain some system stability actually make matters worse as the restarts then begin to hide genuine stability issues which eventually start happening during business hours as well and therefore cause grief for customers as unplanned downtime starts occurring. The impetus for one of my first ACCU articles “Utilising More Than 4GB of Memory in a 32-bit Windows Process” came from just such an issue where a service suddenly starting failing with out-of-memory errors even after a restart if the load was awkwardly skewed. It took almost four weeks to diagnose and properly fix the issue during which there were no acceptable workarounds – just constant manual intervention from the support team.

I also lost quite a few hours on the system I mentioned earlier debugging a problem in the caching mechanism which was masked by a restart and only surfaced because the restart failed to occur. No one had remembered about this failure mode because everyone was so used to the restart hiding it. Having additional complexity in the code for a feature that will never be used in practice is essentially waste.

Cracking Nuts

Although it’s not true in all cases (the memory problem just described being a good example) the restart option may be avoidable if the process exposed additional behaviours that allowed for a more surgical approach to recovery to take place. Do you really need to restart the entire process just to flush some internal cache, or maybe just a small part of it? Similarly if you need to bump the business date via an external stimulus can that not be done through a “discoverable” API instead of hidden as part of a service restart [2]?

In some of my previous posts and articles, e.g “From Test Harness To Support Tool”, “Home-Grown Tools” and more recently in “Libraries, Console Apps, and GUIs”, I have described how useful I have found writing simple custom tools to be for development and deployment but also, more importantly, for support. What I think was missing from those posts that I have tried to capture in this one, most notably through its title, is to focus on resolving system problems with the minimal amount of disruption. Assuming that you cannot actually fix the underlying design issue without a serious amount of time and effort can you at least alleviate the problem in the shorter term by adding simple endpoints and tools that can be used to make surgical-like changes inside the critical parts of the system?

For example, imagine that you’re working on a grid computing system where tasks are dished out to different processes and the results are aggregated. Ideally you would assume that failures are going to happen and that some kind of timeout and retry mechanism would be in place so that when a process dies the system recovers automatically [3]. However, if for some reason that automatic mechanism does not exist how are you going to recover? Given that someone (or something) somewhere is waiting for their results how are you going to “unblock the system” and allow them to make progress, without also disturbing all your other users who are unaffected?

You can either try and re-submit the failed task and allow the entire job to complete or kill the entire job and get the client to re-submit its job. As we’ve seen one way to achieve the latter would be to restart parts of the system thereby flushing the job from it. When this is a once in a million event it might make sense [4] but once the failures start racking up throwing away every in-flight request just to fix the odd broken one becomes more and more disruptive. Instead you need a way to identify the failed task (perhaps using the logs) and then instruct the system to recover such as by killing just that job or by asking it to resubmit it to another node.

Hence, ideally you’d just like to hit one admin endpoint and say something like this:

> admin-cli kill-job --server prod --job-id 12345

If that’s not easily achievable and there is distributed state to clear up you might need a few separate little tools instead that can target each part of system, for example:

> admin-cli remove-node –s broker-prod --node NODE99
> admin-cli remove-results -s results-prod --job 12345
> admin-cli remove-tasks –s taskq-prod --job 12345
> admin-cli reset-client –s ui-prod --client CLT42
> admin-cli add-node –s broker-prod --node NODE99

This probably seems like a lot of work to write all these little tools but what I’ve found in practice is that usually most of the tricky logic in the services already exists – you just need to find a way to invoke it externally with the correct arguments.

These days it’s far easier to graft a simple administration endpoint onto an existing service. There are plenty of HTTP libraries available that will allow you to expose a very basic API which you could even poke with CURL. If you’re already using something more meaty like WCF then adding another interface should be trivial too.

Modern systems are becoming more and more decoupled through the use of message queues which also adds a natural extension point as they typically already do all the heavy lifting and you just need to add new message handlers for the extra behaviours. One of the earliest distributed systems I worked on used pub/sub on a system-wide message bus both for functional and administrative use. Instead of using lots of different tools we had a single admin command line tool that the run playbook generally used (even for some classic sysadmin stuff like service restarts) as it made the whole support experience simpler.

Once you have these basic tools it then becomes easy to compose and automate them. For example on a similar system I started by adding a simple support stored procedure to find failed tasks in a batch processing system. This was soon augmented by another one to resubmit a failed task, which was then automated by a simple script. Eventually it got “productionised” and became a formal part of the system providing the “slow retry” path [3] for automatic recovery from less transient outages.

Design for Supportability

One of the design concepts I’ve personally found really helpful is Design for Testability; something which came out of the hardware world and pushes us to design our systems in a way that makes them much easier test. A knock-on effect of this is that you can reduce your end-to-end testing burden and deliver quicker.

A by-product of Design for Testability is that it causes you to design your system in a way that allows internal behaviours to be observed and controlled in isolation. These same behaviours are often the same ones that supporting a system in a more fine-grained manner will also require. Hence by thinking about how you test your system components you are almost certainly thinking about how they would need to be supported too.

Ultimately of course those same thoughts should also be making you think about how the system will likely fail and therefore what needs to be put in place beforehand to help it recover automatically. In the unfortunate event that you can’t recover automatically in the short term you should still have some tools handy that should facilitate a swift and far less disruptive manual recovery.

 

[1] Note that this is different from a process restarting itself because it has detected that it might have become unstable, perhaps through the use of the Circuit Breaker pattern.

[2] Aside from the benefits of comprehension this makes the system far more testable as it means you can control the date and therefore write deterministic tests.

[3] See “When Does a Transient Failure Stop Being Transient” for a tangent about fast and slow retries.

[4] Designing any distributed system that does not tolerate network failures is asking for trouble in my book but the enterprise has a habit of believing the network is “reliable enough”.